Panneaux solaires voltaïques
Il est possible d’évalue dans un premier
temps l’énergie électrique E produite annuellement en kWh par ses
panneaux sans faire appel aux structures Reconnues Garantes de l’Environnement
(RGE).
Ceci à partir de la formule suivante :
E = S x r x H x Cp
Avec :
S surface du
panneau solaire en m²
r
rendement du
panneau voltaïque * (environ 14% avec les technologies actuelles)
H ensoleillement optimum sur la surface inclinée en
kWh/m²/an selon la région
(voir carte ci-dessous pour l’hexagone et la Corse)
Cp coefficient de perte (compris entre 0,9 et …très faible) une valeur
fréquente étant 0,75. Dans ce coefficient est inclus :
-
les
pertes dans l’onduleur (environ 12%),
-
la
diminution de performance due à l’orientation
et à l’inclinaison du panneau (0 à 55%). Ceci par rapport à l’orientation
idéale vers le sud avec 30° d’inclinaison,
-
l’influence de la température du panneau** sur ses performances (température optimum
25°C)
Source
Ademe
Accès : à la carte SUN à la carte ECODEM
Exemple
Energie électrique produite annuellement
par un panneau voltaïque de 20 m² avec r = 14% installé en région parisienne avec
H = 1250
kWh/m²/an et un coefficient de perte de 0,75
E = 20 x 0,14 x 1250 x 0,75 = 2 625 kWh (131 kWh/m2)
Production française
La France est en retard par rapport aux autres
pays européens en ce qui concerne le voltaïque. Elle produit paradoxalement
environ deux fois plus d'électricité dite verte avec l'éolien qu'avec le
voltaïque alors que ce devrait être l'inverse.
On a du mal à comprendre quels sont
quantitativement les objectifs visés lorsque faisant suite au 1er
vote du triptyque renouvelable-nucléaire-synthèse prévu le pendant le
premier semestre 2023 notre président et la presse raisonne en puissance en
fixant comme objectif de dépasser les 100 GW en ce qui concerne le voltaïque
(plus 40 GW pour l'éolien en mer) en 2050. On sait qu’un GW c'est un million de
kW mais s'agit-il de GWc. (gigawatt
crête)?
En France, mieux ensoleillée que la Belgique mais
moins que l'Espagne, une installation d’1 kWc produit en moyenne 1000 kWh par
an en conditions optimales (contre 900 kWh en Belgique et 1 250 kWh en Espagne)
Si l’on raisonne en GWc cela équivaut
sensiblement en 2050, une échéance bien éloignée, à la production annuelle de
11 centrales nucléaires de 1000 mégawatt ce qui est certes loin d'être
négligeable mais bien faible par rapport au potentiel qu'offre le voltaïque
(voltaïque en
kWh : 1 000 x 100 000 000 kWh alors
que nucléaire : une CN de 1000 MW en
supposant qu'elle fonctionne en permanence produit à l'année 1 000 x 1000 x
8760 kWh.
Courant continu – courant alternatif
Il faut en premier comprendre que les
panneaux solaires voltaïques délivrent du courant continu alors que les réseaux
électriques actuels sont des réseaux qui délivrent du courant alternatif (à la
fréquence de 60 Hz aux USA et de 50 Hz en Europe). Un organe important,
l’onduleur, assure la transformation continu > alternatif de telle sorte que
l’énergie délivrée par le panneau puisse alimenter le réseau. Ceci également de
telle sorte que l’électricité produite par les panneaux voltaïques puisse être
autoconsommée sur place par le propriétaire des panneaux la plupart des
« moteurs » électriques existant sur le marché étant des moteurs à courant
alternatif. Concernant les coûts, l’évolution vers le haut du prix de revient
de l’électricité d’origine nucléaire comparativement à celui de l’électricité
solaire qui évolue régulièrement à la baisse, va faire que dans un avenir
relativement proche les constructeurs vont s’orienter vers la génération
voltaïque de l’électricité. Il n’est même pas impossible qu’à plus long terme
la France s’implique dans la création de composants utilisant directement le
courant continu délivré par les panneaux. Ceci par exemple de telle sorte que
le compresseur des pompes à chaleur soit entraîné par des moteurs électriques à
courant continu à vitesse variable. Ce type de moteur existe déjà dans
l’industrie. Pour exemple la société OILGEAR spécialisée dans les
systèmes électrohydrauliques a subi la concurrence de ce type de moteur dans
les machines sidérurgiques de coupe à la volée.
Source EDF et cours des comptes
Le tarif
conventionnel de l’énergie électrique pour les particuliers est encore calculé
en France sur la base du prix de revient de l’énergie électrique d’origine
nucléaire. La complexité de la chaîne énergétique utilisant le nucléaire pour
produire l’électricité fait que le prix de vente à l’utilisateur français
augmente sensiblement de 5% par an en France alors qu’il est déjà très élevé
(15 €/MWh ou 15 cts d’€ kWh). Ceci alors que le prix de revient de l’électricité
solaire diminue régulièrement. Nous avons déjà passé en 2021 la croisée des
chemins ce qui explique. Alors que l’Allemagne vient de réaliser qu’elle en a
fait un peu trop avec l’éolien, la France ferait bien de prendre en compte
qu’elle n’en a pas fait assez avec le voltaïque.
Voir à ce sujet les
dernières pages du fichier sur les méthodes de production
de l’électricité
Il s’agit cette fois du Monde et non de la France. On
remarque ce qui est logique que l’augmentation mondial de la production
électrique solaire et le « temps qui
passe » diminue assez régulièrement le prix de revient du kWh
électrique
Le calcul de la production annuelle des
panneaux voltaïque est parfois basé sur une production à puissance
constante optimum. Ceci en liaison avec une puissance crête qui serait
constante et s'établirait sur une période limitée à 1000
heures. Dans la pratique la puissance de sortie du panneau solaire est
très dépendante de la saison. Ce raisonnement un peu abrupt pourrait consister à
dire sans autre forme de procès que les installations
individuelles les plus courantes étant de 1,5 à 3 kWc, leur production est
respectivement pour chacune de ces deux surfaces de 1500 et 3000 kWh.
Lorsque l’on tente de définir la production
à partir de la surface des panneaux en évaluant celle-ci en fonction de leur
surface il faut connaître la correspondance entre la puissance crête et la
surface des panneaux. Si la puissance crête définie au contrat est de 3kWc avec
une production annuelle de 3000 kWh et que la surface des panneaux
correspondante est de 20m² leur production annuelle est « tout
simplement » de 3000/20=150 kWh/m².
Les panneaux solaires ne sont pas
toujours rajoutés sur une toiture existante. Ceci dans la mesure où ils peuvent
constituer la toiture elle-même. On parle alors de panneaux solaires intégrés (BIPV
où Building Integrated PhotoVoltaïque) ayant des
performances plus importantes
Immeuble sur l’ile de
Taiwan avec panneaux solaires intégrés
Surface panneaux 4000
m2…émettant.250 kWh au m2
*Le rendement des cellules photovoltaïques à
base de silicium peut varier dans la pratique selon la société SUN du simple au
triple. Les cellules photovoltaïques à base de silicium amorphe fonctionnent
avec un éclairement relativement faible ou diffus, sont un peu moins chères et
ont un rendement faible compris entre 5 à 7%.
Les cellules à base de silicium polycristallin sont d’un
aspect bleu non uniforme, ont un rendement de 14 à 18%.
Enfin, celles à base de silicium monocristallin sont
d’une couleur bleu uniforme et bénéficient du meilleur rendement possible qui
est compris entre 18 à 24%.
On cherche à réduire l’épaisseur de silicium purifiée à 0,1 mm pour baisser les
prix.
**Selon la société SUN,
l’onduleur, qui converti le courant continu délivré par le panneau en courant
alternatif peut contrôler la puissance électrique délivrée pour qu’elle soit
conforme au besoin. Cela sous-entend que si le besoin est inférieur à la
puissance délivrée par le panneau il s’en suit un échauffement du
panneau !
Cette remarque met en évidence l’importance de l’autoconsommation et à terme du
stockage de l’énergie électrique grâce à la « Solar Water Economy »
de l’hydrogène en liaison avec celle de l’enthalpie.